
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 3, 507-526 (1983) 

WAVE ENVELOPE AND INFINITE ELEMENTS 
FOR ACOUSTICAL MDIATION* 

R. J. ASTLEY 

Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand 

SUMMARY 

Finite element models are presented for the calculation of near and far field acoustical radiation. These 
models are applied to the specific problem of fan noise radiation from axisymmetric turbofan inlets. In 
all cases conventional acoustic finite elements are used within an inner region close to the inlet. The far 
field is represented by infinite elements or wave envelope elements. Theory and results are presented 
for the case with zero mean flow. Comparisons of computed data with analytic solutions and measured 
values establish the utility of both the infinite element and wave envelope element schemes in 
determining the near field values of acoustical pressure. The wave envelope scheme is shown to be 
effective also in the far field. Both schemes use meshes an order of magnitude more sparse that would 
be required in conventional numerical discretizations, and may consequently be applied at modest 
computational cost. 

KEY WORDS Finite Elements Infinite Elements Acoustics Wave Propagation Radiation 

1. INTRODUCTION 

Finite element (FE) methods have been used extensively in recent years to model linear 
acoustical fields. Harmonic time dependence may frequently be removed from the problem 
prior to discretization. A Helmholtz or modified Helmholtz equation then results for the 
acoustical pressure amplitude or velocity potential. The boundary conditions of such prob- 
lems typically involve prescribed impedance conditions or structural-acoustical coupling. 
Such applications have been the subject of several recent review article~l-~ and will not be 
discussed here in further detail except to observe that most of the problems investigated to 
date have involved bounded enclosures. The difficulties of coupling such finite element 
solutions (or those from any other numerical scheme) to a suitable far field solution 
incorporating anechoic conditions at large distances from the exciting mechanism, have 
received less attention to date. It is for problems of this type that the schemes proposed in 
this paper are presented. The methods proposed are direct numerical schemes and do not 
involve matching of numerical and analytic solutions to obtain valid far field descriptions. 
This is a desirable feature for application to problems where the acoustical field is propagat- 
ing on a non-zero-mean flow. In such cases simple separable far field solutions are seldom 
available and methods which rely on their existence (e.g. mode matching) are generally 
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inapplicable. Although the methods described in this paper are presented for the case 
without mean flow it is towards an ultimate application to the case with flow that the work is 
directed. 

The formulations proposed in this paper are developed and tested with reference to a 
specific physical application, that of fan-noise radiation from the inlet region of turbofan 
aircraft engines. A brief review of this problem now follows. 

1.1. The turbofan inlet problem 

Much attention has been given in recent years to the development of numerical schemes 
for the prediction of fan noise in the vicinity of turbofan inlets. Such work has formed part of 
a broader effort directed towards the reduction of noise generated by commercial turbofan 
aixraft. Methods for predicting the modification of the acoustical field as it passes through 
the ducted (and usually acoustically treated) sections of turbofan inlets are well advanced and 
include wave envelope weighted residual schemes: FE schemes of various types,*,' and 
transient finite difference  scheme^,^." all of which seem capable of handling the linear 
problem for realistic frequencies and Mach numbers. 

The propagation of sound in the external region, which extends from the throat of the inlet 
to the far field, presents a more demanding computational problem since it requires the 
imposition of radiation type boundary conditions at an infinite (or at least distant) boundary. 
None of the numerical schemes currently developed for the ducted sections of the inlet may 
be conventionally applied to the exterior region, since the dimensionality of the linear matrix 
problem then required to resolve the relatively short wavelength disturbances typical of real 
inlets is prohibitively large. 

A more subtle approach is therefore required and a means must be found of confining the 
purely numerical portion of the solution within a relatively small computational domain close 
to the inlet itself. One such approach involves the application of boundary integral methods 
to the outer region, effectively modelling the outer field by a distribution of source functions 
over a control surface enclosing the inlet.' The impedance on this surface may then be 
matched iteratively to that of a conventional €33 numerical solution in the inner region. This 
method has produced promising results although it currently appears to present practical 
difficulties when strongly cut-on modes are present in the inlet.' 

and further developed in the 
current paper involves the modification of the shape and weighting functions within a 
standard Galerkin FE scheme to accommodate the fine harmonic detail of the solution in the 
outer region. This is done either through the use of infinite elements-which impose an 
exaggerated exponential decay on the outer solution and consequently may only safely be 
used to predict the effect of the far field on the near field solution-or by the use of wave 
envelope elements which incorporate the gross features both of the asymptotic decay and of 
the harmonic variation within a large but finite outer domain. The wave envelope elements, 
which conceptually resemble those used for internal duct problems," have the advantage of 
directly predicting acoustical pressures in the far field. 

Infinite element and wave envelope radiation theory is presented in this paper for the case 
with no mean flow. Some preliminary results are also presented for a simple test case with 
uniform mean flow. The results which are presented demonstrate the accuracy of the various 
formulations by comparison with exact solutions for hyperboloid ducts and with experimen- 
tal measurements for more realistic inlet geometries. 

An alternative approach pursued by the present 
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Figure 1. Geometry of the inlet region 

2. THEORY 

2.1. Geometry and governing equations 

The geometry of an idealized turbofan inlet is shown in Figure 1. C,, denotes a rigid 
boundary and is formed, for the purposes of the present analysis, by the surface of the inlet 
lip and a notional conical surface swept back at an angle Oo to the z-axis (if Oo = 180" this 
surface becomes the centreline behind the inlet). C, denotes a convenient plane within the 
inlet at which it is assumed that a known ensemble of incident (i.e. travelling from left to 
right in Figure 1) acoustical modes is present. C, will be termed the 'fan plane', although for 
cases where a uniform segment extends from the actual fan plane to the start of the 
expanding lip C, is conveniently moved forward to this point for reasons of computational 
economy. The region in which a solution will be sought is subdivided into inner and outer 
subregions Ri and R, with an interface at the boundary C1 and an overall outer boundary at 
C, as shown in Figure 1. The flow within this region is assumed to inviscid, adiabatic and 
irrotational and may be described by a velocity potential @(x, t )  which has a mean 
component G(x) and a fluctuating acoustical component (DA(x, t). The acoustical component 
will be assumed to  be of the form 

@"(x, t )  = f ( r', z )  eiwt+'+ (1) 
the term eCimm accounting for the presence of spinning acoustical modes generated by 
rotor-stator interaction. The integer rn (sometimes denoted m+) will be termed the spinning 
or angular mode number. In the analysis which follows it will be assumed that the mean flow 
component &(x) is zero. The equation governing the acoustical velocity potential amplitude 
is then5 

where r' and z are cylindrical polar co-ordinates as indicated in Figure 1 and k = o/co (co 
denotes the ambient sound speed). Although mean flow is excluded in the theory that 
follows, the methods of solution presented in this paper have been developed very much with 
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the inclusion of flow effects in mind. It is therefore worth observing at this stage that if mean 
flow is included equation (2) is modified by the inclusion of convective mean flow terms and 
becomes6 

Alfrrr, + AJiz + Adr‘z + 4 f r ’  + ASfi + A d  = 0 (3)  
where the coefficients Ai ( i  = 1,. . . ,6 )  are functions of position and of the mean flow 
potential. 

2.2. Boundary conditions 

The boundary condition on all rigid surfaces is that of zero normal particle velocity giving 

af -=0 on C, 
an 

where n denotes a co-ordinate locally normal to the boundary. 
On the fan plane, C,, the appropriate boundary conditions may be written 

m m 

i = l  i = l  

and 
m m 

fi = c (-ik:A:fc(r’))+ c (-ikfAff;(r‘)) 
i - 1  i = l  

(4) 

where the functions f: are solutions of the eigenvalue problem in the cylindrical duct section 
and represent incident and reflected waves propagating with axial wavenumbers k’: (if k’: is 
real the mode is ‘cut-on’ and if complex ‘cut-off). The coefficients A: are assumed known. 
The coefficients A; must then be found during the course of the solution. Physically the 
boundary conditions of equations (5 )  and (6) represent a matching of pressure and normal 
velocity between regions to the left and right of the fan plane; it being assumed that to the 
left of C, a known set of incident modes is present. 

At the outer boundary of the solution region a boundary condition must be applied which 
simulates an anechoic surface. In the present analysis the outer boundary, denoted by C,, is 
a spherical surface at r = r,,, ( r ,  0 and 4 are spherical polar co-ordinates as indicated in 
Figure 1). It may therefore be assumed that if r,, is sufficiently large the radiated field will 
behave locally as a plane wave propagating outwards from the origin and normally incident 
on C,. This assumption yields the Sommerfeld condition 

-=- af ikf on Cm 
ar (7) 

and is equivalent to the specification of a ‘pc’ impedance in acoustical terminology. A useful 
physical interpretation of equation (7) and one which facilitates its extension to the case with 
mean flow is to regard it as a statement that at large distances from the inlet the sound field 
will behave as if it emanates from a single complex source located at the origin. No boundary 
conditions are required on the z-axis of geometrical symmetry which appears from Figure 1 
to constitute an additional boundary of the solution region. This is not in fact the case since 
the residual schemes described in the following section involve integration over a volume of 
revolution which contains the z-axis. 
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2.3. The residual scheme 

A general weighted residual scheme is now applied to the field equations and boundary 
conditions described in the preceding sections. An appropriate choice of the basis and 
weighting functions will then generate a variety of numerical schemes. 

First a trial function f is assumed for the velocity potential amplitude f. The trial function 
is formed as an expansion of known basis functions $i (i = 1, . . . , n)  and unknown coeffi- 
cients ai giving 

Substitution of f’ into equation (2) yields a residual R where 

(9) R=~. r .+LfF.+fz ,+(k2-m 2 Ir f2 )f - 
r’ 

The residual is then weighted by an appropriate set of weighting functions Wj ( j  = 1, . . . , n)  
and integrated over the volume of revolution generated by the region bounded by C,, C, and 
C,. Integration by parts of the second order terms in equation (9) yields a set of integral 
equations of the form 

[- W,$ - W,.=fZ + ( k 2 -  m21rr2) M$r’ dr’ dz I R,+R, 

If the boundary residuals which result from the substitution of the trial function f into the 
boundary conditions of equations (4), (6) and (7) are also weighted by Wj and integrated 
over their respective boundaries of revolution, integrated boundary residual equations result 
of the form 

and 

r’v [ s + i k f ]  dS = 0 

A linear combination of equations (lo), (11), (12) and (13)--obtained by subtracting 
equations (11), (12) and (13) from equation (10)-then yields a mixed set of weighted field 
and boundary residual equations of the form 

1 (- W,,,frr - wzTz + ( k 2  - m2/rl2) W$r’ dr’ dz 
R,+% 

(ik:ATf:(rf)+ikTATf;(rf))] dr’= 0 (14) 
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The substitution of equation (8) for f and the truncation of the eigenexpansion of Cf after m 
terms reduces equations (14) to an incomplete set of linear equations for the coefficients A; 
and at. In matrix form these equations may be written 

[B-1 {A-} + [C] {a} = -[B’] {A’} 
n x m m x l  n x n n x l  n x m m x l  

where {A-}, {A’} and {a} are column vectors of the coefficients A;, Af and a,, respectively 
and where the matrices [B-1, [B’] and [C] are given by 

B* = r’Wj(ik:fF(r’)) dr’ 
” J, 

and 

C,, = I [-y,$,, -~,&,+(k2-m2/rr2)Wf$,]r’drtdz- ikW,$$dS (17) 

Although equations (1 5) are incomplete the boundary condition of pressure continuity at C, 
(equation (5)) has not yet been incorporated into the residual scheme. This is now done by 
weighting the residual from equation ( 5 )  with a class of weighting functions Wi = ik;f]-(r’), 
( j  = 1, . . . , m), and integrating over the C, surface of revolution. An additional set of 
weighted equations results of the form 

R,+R, I, 

[D-] {A-) + [B-y {a} = -[D’] {A’} 
m x m m x l  m x n n x l  m x m m x l  

where [B-] is as previously defined and the matrices [D’] are given by 

D* = - ik;f;(r’)fT(r’)r’ dr’ 
“ I,, 

For a hard-walled section at Cf the eigenfunctions fF( r‘) are orthogonal, yielding diagonal 
matrices for [D’] and OD-]. Equations (15) and (18) now combine to give a complete set of 
linear equations in {a} and {A-}. In matrix form this final statement of the discretised 
problem may be written 

The above formulation is still general in the sense that it leaves open the choice both of the 
basis functions $i and of the weighting functions Wj. Some particular choices of these 
functions are discussed in the following section. 

2.4. Choice of basis and weighting functions 

The residual scheme described in the previous section was implemented with three 
different sets of basis and weighting functions. The most straightforward of the schemes 
involves the subdivision of both the inner and outer regions (Ri and R,) into conventional 
finite elements. Nine noded isoparametric rectangles were used. A typical element is shown 
in Figure 2(a). The basis functions t,hi are then defined by the global shape functions, Ni(r’, z ) ,  
associated with node i of the discretization. The global shape functions are themselves 
explicitly defined within each element by appropriate element shape functions. The coeffi- 
cients a, in the trial expansion therefore correspond to nodal values of f. A standard 
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( a )  

Figure 2. Element topology: (a) a conventional element, (b) an infinitelwave envelope element 

Galerkin scheme may then be applied with the basis functions being used also as weighting 
functions. The contributions to the submatrices [B”] and [C] of equation (20) are calculated 
element by element and assembled in the usual way. The uniform duct eigenvectors, fF(v’), 
and axial wavenumbers, k:’ which are required for the evaluation of the integrals in the 
submatrices [D”] may be determined either analytically or numerically. In all the schemes 
presented in this paper they were calculated numerically using a compatible FE eigenvalue 
formulation on the fan plane C,. This process ensures that the resolution implicit in the 
eigenfunction expansion of equations (5 )  and (6) is identical to  that of the FE discretization 
within the adjacent computational region. It also enables the integrals of equation (19) to be 
evaluated element by element and avoids the necessity of calculating Bessel functions of high 
order and argument which would occur in the integrands if analytic solutions were used. 

The formulation described above will be termed the ’conventional’ F E  scheme. It has 
several serious drawbacks when applied to the turbofan inlet problem. The most important 
of these is inherent in the choice of shape/basis functions. These are quadratic in the local 
element co-ordinates 6 and q (see Figure 2(a)). Several elements are therefore required to  
accurately represent a single wavelength variation of the solution in any direction. For 
realistic frequencies the typical far field acoustical wavelength may be an order of magnitude 
smaller than the diameter of the inlet and several orders of magnitude smaller than the 
overall dimension of the computational domain if the outer boundary is sufficiently distant to 
justify the assumption of a ‘pc’ impedance. The number of degrees of freedom then required 
for useful analysis becomes prohibitively large. It was in an attempt to  overcome this basic 
problem that the ‘infinite element’ and ‘wave envelope’ (WE> schemes were developed. 
These are now described. 

In the infinite element and WE schemes a different choice of weight and basis functions is 
made in the inner and outer computational regions. In the inner region, Ri, both @, and Wi 
are chosen as for the conventional scheme, i.e. both are equated to the global element shape 
functions. In the outer region R,, however, an attempt is made to include the gross features 
of the harmonic behaviour of the solution within the basis functions themselves. By this 
means, the elements in the outer region are required to resolve only the discrepancy between 
the actual solution and the implied harmonic and amplitude variations incorporated in the 
discretization. Larger elements may therefore be chosen which extend over many 
wavelengths and a decrease in the overall dimensionality of the problem is anticipated. 

The infinite element scheme, which derives from analogous two dimensional water wave 
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studies,' divides the outer region R, into a single layer of elements. The outer boundary is 
moved to infinity and the elements are therefore of infinite extent. In the current analysis 
nine noded Langrangian elements are used with the assumption that the conventional 
element shape functions for such an element may be extended within the infinite region 
enclosed by the broken lines in Figure 2(b). It is convenient (but not essential) to create the 
mesh of infinite elements so that the sides of the elements are surfaces of constant r and 8 ( r  
and 8 being spherical polar co-ordinates as shown in Figure 1). The basis and weight 
functions corresponding to any node i within the outer region are then defined by 

(21) w, = 4, = N . ( ~ ,  8) e-(ik+l/LX-rt) 
I l l  

The function N i ( r ,  8) in the above expression denotes the conventional global shape function. 
The exponential factor in Wi and qi consists of an outward propagating wave-like factor, of 
wavenumber k, and an exponential radial decay of length scale L. The factor ( r  - ri) in the 
exponential argument ensures that Jli = 1 at node i (ri denotes the polar radial co-ordinate of 
node i) and hence preserves the significance of the coefficients ai in equation (8) as nodal 
values of f The element integrations involved in the evaluation of element contributions to 
Cji from the outer region are more easily performed if spherical (rather than cylindrical) 
polar co-ordinates are used for the integrands of equation (17). The transformation is tedious 
but trivial and results in integrals of the form 

1"' g(8) 1: { ( f a p r p )  e--2(ik+1/L)r 
el  p=o 

A 21-point numerical integration scheme (3 points in the 8 direction, 7 points in the radial 
direction) is used to evaluate these terms. The scheme is exact in the radial direction.' The 
choice of the length scale L is arbitrary to the extent that any value of L which approxi- 
mately represents the amplitude decay in the vicinity of C1 will give a reasonable inner 
s01ution.~~~ It is one of the problems of infinite element solutions, however, that whatever 
rate of exponential decay is chosen it will inevitably fail to represent the whole of the far 
field solution, which, for three dimensional problems, is characterized by reciprocal decay. 
This deficiency is remedied in the WE approach. 

The WE scheme is initially similar to the infinite element formulation in that the weight 
and basis functions are once again identified with the global shape functions within the inner 
region Ri. The outer region however is subdivided into one or more layers of large but finite 
elements. It is again convenient to orientate these elements in the r and 8 directions. The 
topology of a typical WE element is indicated by the shaded element of Figure 2(b). C, is 
retained as a finite outer boundary. The basis functions Jii in the outer region are then 
defined by 

(23) 

where N ( r ,  8) denotes the conventional global shape function associated with node i. The 
basis functions so defined incorporate reciprocal decay and a wave-like variation correspond- 
ing to a locally outward travelling wave. They also have the property that +i = 1 at node i 
and the coefficients q once more retain their significance as nodal values of f The weight 
functions for the WE scheme are now chosen to be the complex conjugates of the basis 
functions, i.e. 

,., 8) 'i e-ik(r-r,) 

r ILi =Ni( 
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Since the conventional shape functions are real this only affects the harmonic factor but has 
the attractive consequence of causing the exponential terms within the integrands of 
equation (17)-which arise from products of W,, J/i and their derivatives-to cancel identi- 
cally. Conventional Gauss-Legendre numerical integration may therefore be used even 
though each element extends over many wavelength variations of Wi and &. For the current 
analysis 3 point integration is used in the r and 8 directions. 

3. RESULTS 

Three sets of results will be presented for the case with no flow. Initially the performance of 
the three numerical schemes (conventional, WE and infinite element) is assessed by a 
comparison of computed and analytic solutions for spinning mode propagation in an 
hyperboloid expansion. Comparisons then follow between computed and experimental 
results for realistic inlet geometries initially at relatively low frequencies and lastly for a high 
frequency case. All results are presented in terms of modal reflection coefficients (where 
applicable) and values of the acoustical pressure amplitude, p, or sound pressure level (SPL). 
The numerically calculated values of p are related to the computed velocity potential by 
p = poiof The computed results presented in this section were obtained using a frontal 
solution to perform the main matrix reduction. Typically 1000-2000 degrees of freedom 
were required with front sizes in the range 40-120. The presentation of results is concluded 
by a discussion of the case with mean flow and the inclusion of some results for a test case 
involving structurally generated acoustical fields in a uniform mean flow. 

3.1. Comparison with analytic results 

A useful analytic test solution incorporating many of the features of real inlets-spinning 
mode propagation, modal mixing, exit reflections-is to be found in an exact solution13 for 
sound propagation through a family of hyperboloid ducts. The geometry for which these 
solutions hold is shown in Figure 3 and consists of a hyperbolic expansion which develops 
from a cylindrical section and tends asymptotically to a conical surface of cone angle OO. 
Numerical results were calculated using all three FE schemes for the particular case 80 = 70" 
and m, = 8. The frequency range investigated includes the cut-on frequency of the first two 
modes in the cylindrical section and corresponds to values of the non-dimensional parameter 

Figure 3. Hyperbolic horn geometry 
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Figure 4. Computed acoustical pressure contours for a hyperbolic duct, (B,=70°, ka = 11, m, =8) conventional 
and WE solutions 

ka in the range 9-0 < ka < 15.0. The computed and analytic solutions are presented for 
single incident modes. 

Contour plots of the absolute value of acoustical pressure serve as useful qualitative 
representations of the numerical solutions. Such plots are shown in Figure 4 for the case 
ka = 11 with mode 1 incident (all other modes being cut off at this frequency). Contours are 
plotted for the conventional and WE schemes and are superimposed on a representation of 
the WE mesh which was used to  obtain the latter results. The WE mesh for this problem 
comprised a fine mesh of conventional elements in the region r < rI (= 1 . 6 ~ )  with four layers 
of WE elements in the outer region ri < r < r,,, (=4a). The conventional results plotted were 
obtained using a mesh with fine resolution over the entire region equivalent to  the resolution 
in the inner region of the WE mesh. Inset in Figure 4 (and in all similar figures to follow) is a 
representation of the characteristic wavelength of the problem, (=27r/k). Within the conven- 
tional inner region an axial mesh resolution of approximately 5 elements per wavelength is 
used. Within the WE region this density is decreased to less than one element per 
wavelength with little perceptible effect on the resulting solution. 

Analogous infinite element results are presented in Figure 5(a) which shows pressure 
contours in the inner region obtained by replacing the WE elements of Figure 4 by a single 
layer of infinite elements. These contours are in fact in very close agreement with those of 
Figure 4 within the inner region. They are compared in Figure 5(b) with the equivalent 
contours obtained by decreasing the dimensionality of the conventional scheme by reducing 
the value of r,,, to 1-6a (equal to rl in the WE and infinite element solutions). The solutions 
of Figures 5(a) and 5(b) therefore represent the same computational effort. It is clear 
however that the solution of Figure 5(b) contains significant spurious reflections at the C, 
boundary which is no longer sufficiently distant to justify the 'pc' impedance. Such effects are 
not apparent in the infinite element or WE solutions. 
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Figure 5. Computed acoustical pressure contours for a hyperbolic duct, (6 ,  = 70°, ka = 11, m+ = 8)  infinite element 

and conventional solutions 

The correspondence of all three schemes to the exact solution is demonstrated in Figures 
6 ,  7, and 8. Figures 6 and 7 show analytic and computed values of the reflection coefficients 
RI1 and R12 at the fan plane-R,j being defined to be the reflection coefficient in mode j 
with mode i incident-and give a measure of the accuracy of the computed solution in the 
near field. The absolute value and phase of R, are plotted against frequency (ka)  through 
cut-on of the first two modes. Figure 8 is a polar plot of computed and exact values for the 
far field directivity function f(0) (defined by p(r ,  0)-f($)/r as r +m). Values are plotted for 
modes 1 and 2 incident at a frequency corresponding to ka = 14-5. Clearly Figures 6,7, and 
8 indicate good agreement between analytic and computed values both in the near and far 
fields. Discrepancies do appear in Figures 6 and 7 as RII  and R12 become small. These are 
partly due to a general loss in accuracy for the reflected portion of the solution as it becomes 
small compared with the total acoustical field and are also partially attributable to the effects 
of small spurious reflections at the 'pc' boundary which become a significant portion of the 
reflected field if RI1 or R,, is sufficiently small. It is noticeable in this regard that the infinite 
element scheme is the most accurate of the three formulations in predicting the reflection 
coefficients. This appears to be a consequence of its implicit removal of the 'pc' 
termination-to infinity-and avoidance thereby of any spurious reflections. The infinite 
element scheme cannot however predict the far field and the far field directivity comparisons 
of Figure 8 consequently include only conventional, WE and analytic solutions. Of interest in 
Figure 8 is the effect of varying r,, in the conventional scheme. For r,, = 1-6a the 
computed directivity function is significantly distorted by near field effects. For the larger 
value of r,, (=4a)  the conventional and WE schemes are however in excellent agreement 
with the analytic far field values. 

3.2. Comparison with experiment 
A comparison of WE and experimental results is now presented for two inlet configura- 

tions. The first of these is an elliptical 'flight inlet' for which experimental data were obtained 
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Figure 6. Computed and exact reflection coefficients for a hyperbolic duct (8, = 70", m+ = 8), absolute value 

in the NASA Langley spinning mode test fa~i1ity.l~ Although the measured data are for 
relatively low frequencies and angular mode numbers (md, = 1) they are particularly valuable 
for comparison purposes since they include measurements both of the modal composition at 
the fan plane and of the far field sound pressure levels. The far field results may therefore be 
related to known incident mode amplitudes and a comparison made on the basis of the 
magnitude and directivity of the far field SPL. The second test case is for a high frequency 
inlet for which directivity SPL measurements must be arbitrarily normalized for comparison 
with the computed solution. 

Comparisons of WE results and measured data for the first inlet are presented for two 
frequencies corresponding to ka = 2-66 and ka = 7.68. For the lower of these values the first 
mode only is cut-on at the throat of the inlet and the measured amplitude of this single 
progressive mode is used as data for the computed WE solution. In the second case the first 
and second modes are cut-on and measured values of the amplitude and phase of each mode 
are used as data for the WE program. Results are presented in the form of computed 
contour plots of SPL-giving a qualitative description of the computed solution in the near 
and far field-and comparisons of computed and measured values of the far field SPL 
directivity. 

Computed contours of SPL over the whole computational domain are shown in Figure 9 
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Figure 8. Computed and exact directivity patterns for a hyperbolic duct (0, = 70", ka = 14.5, rn+ = 8) 
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Figure 9. Computed acoustical pressure contours for a flight inlet, (m+ = 1, ka = 2.66), WE solution 

for ka = 2.66. They are plotted at 8 dB increments and are superimposed on a representa- 
tion of the FE mesh. The outer region of the mesh contains 8 layers of WE elements and 
extends from r ,  = 3a to r,,, = 10a. The inlet lip geometry is indicated by the shaded region 
near the fan plane C,. A rear (and fictitious) computational boundary is placed 135" behind 
the centreline. The corresponding comparison of measured and computed far field SPL 
values is shown in Figure 10. Two measured curves are shown corresponding to measure- 
ments at Cp = 0" and Cp = 180". For this far field comparison, as for a11 that follow, the 
computed solution at C, (in this case at r = 10a) is assumed to determine the 'asymptotic' far 
field directivity function f(6). This is then used to determine actual pressure levels at specific 
radii (r=20-3a in this case) where measured data are available. It must be assumed of 
course that the asymptotic solution holds at the distances involved, an assumption which is 
easily checked by increasing the value of r,, in the computed solution and noting any 
variation in f(6). For this particular case WE solutions were obtained for r,,, = 20a and 

-301 f ?;d 1 ,  , , 

-40 
0 40 80 I20 

eo 
Figure 10. Computed and measured SPL directivity for a flight inlet, (m+ = 1, ka = 2.66) 
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Figure 11. Computed acoustical pressure contours for a flight inlet, (m4 = I, ka = 7.68), WE solution 

r,, = 30a with little perceptible alteration to the computed SPL values of Figure 10. Since 
comparisons are being made effectively on the basis of asymptotic behaviour some latitude is 
also consistently permitted in the choice of the computational origin. In this case the 
computational origin is at the fan plane C,, of Figure 9 whereas the experimental origin is at 
a reference plane C,,, also shown. Asymptotically this difference will not affect the far field 
directivity and no adjustment of data was therefore considered necessary. 

From Figure 10 it is clear that excellent agreement exists between the measured and 
predicted data, certainly in the forward quadrant (6 < 90"). The presence of the rear 
computational boundary causes some reflection (clearly seen in Figure 9) but does not affect 
the forward directivity pattern if the boundary is sufficiently oblique to the inlet. In general it 
has been found-after numerical experimentation with a number of inlets-that provided the 
computational boundary is approximately 90" to the rear of the principal radiation lobe its 
effect on forward radiation is sufficiently small to be neglected. 

Results for the same inlet at a higher frequency (ka = 7-68) are presented in the same 
format in Figures 11 and 12. The relative modal amplitudes of the first and second incident 
modes are in the ratio of 1 : 3 respectively with a phase lag at Cref of 42". The dominance of 
the second mode causes the pronounced two lobed radiation pattern evident in Figures 11 
and 12. Once again the comparison between measured and predicted values of SPL, 
represented by Figure 12, is excellent. It is worth noting that, although the frequencies 
involved in the solutions of Figures 9-12 are relatively small, the dimensions of the wave 
envelope elements employed in the discretizations are many times larger than a single 
characteristic wavelength. The application of a conventional FE scheme even to these low 
frequency configurations would in fact be prohibitively expensive in terms of the CPU time 
required. 

Finally, a comparison is presented between theory and experiment for an inlet at a (more 
or less) realistic frequency and angular mode number. The experimental data for this 
comparison were obtained from tests conducted at the NASA Lweis vertical lift facility.' A 
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Figure 12. Computed and measured SPL directivity for a flight inlet (m, = 1, ka = 7.68) 

JT15D turbofan engine with a rotor-stator arrangement of 41 stator rods and 28 rotor 
blades was used to produce spinning modes of angular mode number 13. The cut-on 
frequency for this configuration corresponds to a value of ka in the vicinity of 15-0. The 
measured data currently available comprise far field SPL measurements normalized to 
100 dB at 6 = 60". Data are only available at this time for the case ka = 15.4, corresponding 
to a frequency slightly above cut-on of the first mode. All other modes are strongly cut-off. 
Computed SPL contours (at 8 dB increments) for ka = 15.4 and m+ = 13 with mode 1 
incident are shown in Figure 13. They are obtained from a WE solution with r,, = 10a. The 
mesh used for the calculation of these results is indicated by the broken lines in Figure 13. 
The far field SPL values predicted by this solution are plotted in Figure 14 and compared 
with measured values (computed and measured results are both normalized to 10OdB at 
8 = 60"). Also shown in Figure 14 are WE results for a more extensive mesh with r,,, = 30a 

Z/R 

Figure 13. Computed acoustical pressure contours for JT15D inlet, (m+ = 13, ka = 15*4), WE solution 
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Figure 14. Measured and computed SPL directivity for 3TlSD inlet (rn6 = 13, ka = 15.4) 

demonstrating a large degree of convergence of the WE far field results to an asymptotic 
limit as rmJu + a. Results from the finite element-integral theoryg for the same problem 
are also presented and appear to give somewhat poorer correspondence with the measured 
values. The measured data is admittedly somewhat sparse but the correspondence between 
predicted WE results and measured values appears to be good in the forward quadrant. The 
boundary at O0 = 134" produces spurious reflections which are not well resolved by the 
numerical solution but which again do not affect the solution greatly in the regions of 
significant forward radiation. 

3.3. The case with mean flow 

It was noted in Section 2.1 that although the theory presented applies only to the case of a 
quiescent medium it was developed very much with the inclusion of mean flow effects as the 
ultimate goal. Details of the modifications required to accommodate such effects lie beyond 
the scope of the present paper and will be reported in full at a later date. Algebraically the 
modifications are considerable. Conceptually, however, they involve little that has not 
already been discussed in the context of the no flow case. The major difference involves the 
treatment of the far field boundary condition to accommodate convective effects. Ray 
acoustical theory may be used to accomplish this if the numerical solution is assumed to 
behave locally at the far field boundary like a wave packet emanating from a source at the 
origin. For a quiescent medium this assumption is equivalent to the Sommerfeld condition 
used in the formulation already described. It is convenient to use the ray paths and constant 
phase surfaces predicted by ray theory as the boundaries of the elements in the outer region. 
The factor (l/r)e-ikr which occurs in the shape function definitions for the no-flow wave 
envelope elements must then be replaced by a more complicated factor involving the 
asymptotic behaviour of wave packets travelling along the appropriate ray paths. 
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Figure 15. Computed acoustical velocity potential contours for test case with flow (kL =6.28, k,L =3.14, 
M = 0.33) 

The utility of this approach is demonstrated by the inclusion of two figures representing 
wave envelope solutions for a simple test case with mean flow present. Physically the test 
case is that of the acoustical field generated by an axially symmetric structural wave of 
wavenumber k, travelling along a thin flexible cylinder located near the origin. The cylinder 
lies along the z-axis and is of finite length L. A uniform flow of Mach number M flows over 
the cylinder in the negative z direction and is undisturbed if the cylinder is assumed to be of 
infinitesimal radius. The structural wave is moving in the positive z-direction. An exact far 
field solution for this problem may be obtained as an integral of volume velocity sources 
along the z-axis, the strength of the sources being deduced from the effective boundary 
displacement of the exciting structural wave. Since the mean flow is assumed uniform (i.e. 
undisturbed by the cylinder) the ray paths and constant phase surfaces due to a source at the 
origin are straight lines and convected spherical surfaces as indicated by the element 
boundaries in the sparse outer region of Figure 15. In the same Figure are shown the 
computed contours of /#I, at 10 dB increments, calculated using a wave envelope finite 
element scheme incorporating the effects of mean flow. For this particular solution the 
frequency parameters were kL = 271. and k,L = r,  with an adverse Mach number M = 0.333. 
As with the no-flow results the wavelengths of acoustical and structural waves are also 
indicated for comparison with the length scales of the solution region and the size of 
individual elements. A close correspondence between the computed solution represented by 
the contours of Figure 15 and the exact far field solution mentioned previously is demon- 
strated in Figure 16 where both solutions are plotted at the outer boundary of the 
computational region (i.e. the outermost spherical surface indicated by dotted lines in Figure 
15). The ordinate of Figure 16 is 8, the polar angle subtended at the origin. 

Although the above case with flow is still not entirely representative (since the mean flow 
is undisturbed by the generating mechanism) it does indicate that the current approach is 
well able to handle the complications associated with convective effects. Further work on the 
case with sheared mean flow is now in progress and will be reported at a later date. 
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Figure 16. Computed and exact far field velocity potential for test case with flow: 0 exact,--computed 

4. CONCLUSIONS AND GENERAL DISCUSSION 

Of the three schemes presented in this paper (conventional, WE and infinite element) it is 
clear that the latter two are capable of producing useful results for acoustical radiation at 
relatively high frequencies and angular mode numbers. The conventional scheme is disqual- 
ified in this regard by virtue of its inherent dimensionality requirements for short wavelength 
solutions propogating into the far field. Comparisons with analytic results indicate that both 
the WE and infinite element schemes are proficient in predicting near field effects and do so 
at greatly decreased computational cost when compared with the conventional scheme. The 
WE scheme moreover appears capable of predicting accurate far field behaviour with sparse 
meshes whose node spacing is large compared with a single wavelength of the resulting 
solution. It has been shown to give results which are generally in good agreement with 
experiment. 
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